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Abstract

Regional analysis of ecosystem properties, including soil C, is a rapidly developing area of
research. Regional analyses are being used to quantify existing soil C stocks, predict changes in
soil C as a function of changing landuse patterns, and assess possible responses to climate change.
The tools necessary for such analyses are simulation models coupled with spatially-explicit
databases of vegetation, soils, topography, landuse and climate. A general framework for regional
analyses which integrates models with site-specific and spatially-resolved data is described. Two
classes of models are currently being used for analyses at regional scales, ecosystem-level models,
which were originally designed for local scale studies, and more aggregated ‘macro-scale’ models
developed for continental and global scale applications. A consideration in applying both classes
of models is the need to minimize errors associated with aggregating information to apply to
coarser spatial and temporal scales. For model input data, aggregation bias is most severe for
variables which enter into non-linear model functions, such as soil textural effects on organic
matter decomposition and water balance or the temperature response of decomposer organisms.
Aggregation of model structure also needs to be considered, particularly for macro-scale models.
For example, representations of litter and soil organic matter by only one or two pools may be
suitable for representing equilibrium conditions but rates of change will tend to be overestimated
for transient-state conditions using highly aggregated models. Geographic soils data, derived from
field surveys, are a key component for regional analyses. Issues of data quality and interpretation
of soil survey data are discussed in the context of regional analyses of soil C. Areas for further
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development of data and modeling capabilities, including refining soil C maps, developing spatial
databases on landuse and management practices, using remotely sensed data in regional model
applications, and linking terrestrial ecosystem models with global climate models, are discussed.
© 1997 Published by Elsevier Science B.V.

Keywords: simulation modelling; soil organic matter; scaling; spatial aggregation; climate change;
remote sensing; GIS

1. Introduction

An understanding of the distribution and dynamics of soil C at the regional
level is an important step in quantifying regional and global C balances and in
assessing the responses and feedbacks of terrestrial ecosystems to climate
change. Soils constitute the major land surface C reservoir, ~ 1600 Gt C, which
is roughly three times the amount of C contained in the terrestrial biomass
(Sundquist, 1993). Soil C levels are controlled by a variety of climatic and
biogeophysical factors, but in addition, they are highly influenced by landuse
practices, in particular by the conversion of native ecosystems to agricultural use
(Post and Mann, 1990; Davidson and Ackerman, 1993; Paustian et al., 1997a).
Thus, both environmental and human factors need to be incorporated into
methodologies for predicting regional soil C changes.

In this paper we review current methodologies which are applicable for
regional analyses of soil C, focusing on the use of simulation models linked to
georeferenced databases. Over the past twenty years, a number of estimates of
regional and global soil C stocks have been made based on extrapolations from
measured data (Schlesinger, 1977; Post et al., 1982; Eswaran et al., 1993).
While efforts to refine these estimates will continue, purely empirical ap-
proaches are limited in their ability to assess future changes in soil C which are
likely to occur as a result of changes in climate, atmospheric CO, enrichment
and the pattern and intensity of landuse. Thus, models which can integrate the
principle mechanisms governing the turnover of soil C are needed for making
projections of soil C change. Models can also be used to couple terrestrial
processes with atmosphere and hydrosphere components of the global system.

Methodologies for regional scale analyses of soil C need not be specific to
any particular region of the world. However, their application will be differen-
tially constrained according to data availability and the degree of understanding
of a particular system, as embodied in the model functions. There are still
relatively few examples of regional-scale analyses of soil C using dynamic
models and spatially-resolved input data, and nearly all such studies have dealt
with temperate systems (Parton et al., 1987; Pastor and Post, 1988; Burke et al.,
1994; Donigian et al., 1994; Paustian et al., 1997b). There have also been
global- and continental-scale analyses (Esser, 1992; Potter et al., 1993; VEMAP,
1995; King et al., 1997), using conceptually similar approaches. Although many
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of the examples cited in this paper are from temperate zone studies, most of the
concepts may apply equally to the tropics.

In this paper, we outline a general framework for making regional analyses of
soil C change and we evaluate different modeling approaches. We consider
questions of scale, data and model aggregation and the evaluation of error and
uncertainty as they pertain to regional analyses of soil C. We address regional
and global soils databases, primarily in the context of providing information to
initialize and validate soil C models. Finally, we discuss several emerging issues
concerning prediction of soil C responses to global change including (i) refining
empirically-derived soil C maps, (ii) predicting the impacts of landuse change,
(iii) using remotely sensed data in modeling studies, and (iv) interfacing
terrestrial system models with global climate models.

2. A general framework for regional analyses of soil C

Regional analysis of soil C requires the integration of dynamic models, which
represent the feedbacks and interactions between soil processes, with informa-
tion about the biotic and abiotic variables which drive these soil processes.
Empirical data on soil C dynamics, applicable to the region under study, is also
needed to evaluate model performance. A general framework for the integration
of these elements of regional analysis was proposed by Elliott and Cole (1989).
In this approach, there are four main components (Fig. 1). Process studies (I)
include experimental work and theory development about the processes (and
their controls) which influence soil C dynamics. Such processes could include
decomposition, nutrient mineralization /immobilization, soil heat and water flux,
inorganic chemical equilibria and vegetation dynamics. This knowledge is
embodied in a systems model (IT) which integrates the processes controlling soil
C and its changes over time. Controlling factors which are considered as being
exogenous to the system are referred to as driving variables, and include such
‘geographic’ data (III) as climate, soil factors (e.g., soil texture, mineralogy),
topography, land cover and landuse. Within a region, these factors vary spatially
(and temporally) and thus geographic information system (GIS) technologies
have emerged as a means of organizing such information. In addition to
supplying driving variables, geographic information can provide validation data,
such as regional maps of soil C distribution, which can be compared with model
outputs. Geographic information can consist of empirical data or data generated
from another model, e.g., climate station records versus climate model output.
Several issues dealing with geographic information such as soil C maps and
remotely-sensed data are discussed later in the paper. Finally, site-specific data
from detailed field experiments on soil C dynamics provide high quality
information for validating model behavior. When this information is organized
into ‘site networks’ (IV) where different climate regimes, soil types and land
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Fig. 1. A framework for regional analysis showing the integration of process information, site
networks of long-term field experiments and spatially-resolved geographic information with
system models to predict soil C dynamics. Derived from Elliott and Cole (1989) and Paustian et
al. (1995).

management practices are represented, then the validity and generality of the
model can be evaluated over the range of conditions existing within the region.
Several such site networks of existing long-term experiments have recently been
organized for North America (Paustian et al., 1995; Elliott and Paustian, 1996;
Paul et al., 1997), Australia (Martin et al., 1995; Grace, 1996) and Europe
(Smith et al., 1996a) and organization of a global field experiment network,
SOMNET, is currently ongoing (Smith et al., 1996b). Other examples of
networked research projects which can provide this kind of information include
the Tropical Biology and Fertility Programme (TSBF) and the US Long-Term
Ecological Research (LTER) Program.

In the remainder of this paper we discuss some different types of soil C
models, implications of scale, aggregation and model resolution, and the use of
spatially-resolved data which can be integrated with models to make regional
projections of soil C dynamics.

3. Approaches to modeling soil C

Much of our current understanding of soil behavior, including organic matter
dynamics, stems from the broad, regional-scale perspectives of pioneer pedolo-
gists such as Dokuchaev, Hilgard, Jenny and others. Their comparative studies
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of soil properties as determined by climate, parent material, biota, topography
and time attempted to generalize patterns of soil properties from local to global
scales. Ironmically, it is only recently that quantitative models of soil organic
matter and nutrient dynamics have begun to be applied to the kinds of
regional-scale questions posed by the classical pedologists. For the most part,
these models were originally developed to investigate questions of ecosystem
behavior at the site or ‘patch’ level (e.g., a forest stand, a maize field, a pasture).
Implicit in their formulation is the assumption that driving variables such as
climate and soil properties are homogeneous across the land area of the patch.

The relatively recent interest in applying models to regional and global level
questions of soil C dynamics has led to the emergence of two basic modeling
approaches, which we refer to as ‘ecosystem-level’ models and ‘macro-scale’
models. The first category refers to models which were originally developed to
simulate ecosystem processes at local scales but which are increasingly being
applied at regional scales. The latter group refers to a class of models which
have been developed primarily for global modeling in which the spatial scale is
defined as a latitudinal-longitudinal grid cell. We recognize that spatial scales
form a continuum, allowing for a potentially infinite number of model spatial
resolutions. However, we maintain that the development and application of soil
and ecosystem models have led to a more or less dichotomous grouping. To
illustrate these two approaches, we have selected only a few of the many models
which consider soil C dynamics.

3.1. Ecosystem-level models

Most existing soil C models are inherently fine-scale, on the order of square
meters or hectares, in their original design concept. Most can be characterized as
one-dimensional in that they consider only soil variability with depth, in order to
account for differences between soil horizons. Many are structurally complex
and consider multiple organic matter fractions to account for variability in the
decomposability of different organic compounds. Most of the models assume
that decomposition follows first-order kinetics, i.e., a constant fractional loss per
unit time, of different organic matter fractions, with the potential rate being
modified by a variety of soil environmental conditions (Paustian, 1994). In
general, a relatively large number of rate controls representing soil environmen-
tal conditions are considered in these models, including soil temperature, soil
moisture, pH, soil texture, nutrient concentrations, as well as other factors such
as litter composition and disturbance regimes. The model] time steps range from
daily to annual.

The relatively detailed structure of these models are indicative of their
original development for ecosystem-level investigations, with applications in
relatively data-rich environments. Three models which fall into this grouping but
which have been used extensively for regional level applications are described
below (Table 1).
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The Century model (Parton et al., 1987, 1988, 1994) is an ecosystem model
that simulates soil C, N, P and S dynamics, primary productivity and water
balance at monthly time steps. It was originally designed to analyze soil organic
matter dynamics in grassland soils over periods up to several thousand years
(Parton et al., 1987). Subsequent model modifications have expanded its appli-
cability to agricultural systems (Cole et al., 1989; Paustian et al., 1992;
Metherell et al., 1995), forests (Sanford et al., 1991) and savanna systems
(Seward and Woomer, 1993; Woomer, 1993). It includes two litter fractions
(metabolic and structural) and three organic matter fractions (active, slow,
passive) differing in inherent decomposability and in the degree to which soil
texture effects turnover rates. The principle driving variables are monthly
minimum and maximum temperature and monthly precipitation. Other important
soil process rate controls are soil texture, litter lignin and N content and tillage
disturbance.

The Rothamsted soil C model (Jenkinson and Rayner, 1977; Jenkinson et al.,
1987; Jenkinson, 1990) simulates soil C dynamics, using C inputs from primary
productivity as an external driving variable, with monthly time steps. The model
was originally designed for use in agricultural soils, in particular for analysis
and interpretation of soil C changes in the classical long-term plots at Rotham-
sted (Jenkinson and Rayner, 1977). The model (Jenkinson et al., 1987; Jenkin-
son, 1990) consists of two litter fractions (decomposable and resistant) and four
soil organic matter fractions (zymogenous and autochthonous microbial biomass,
humus and inert organic matter). The principle driving variables are mean
monthly temperature, precipitation, and pan evaporation (for calculation of soil
moisture). Soil texture influences C turnover, with the influence of texture
defined by inorganic cation exchange capacity (CEC), which depends on clay
content and mineralogy. Litter quality is defined as the proportion of decompos-
able versus resistant material, based on calibrations of short-term (e.g., 1-5
years) decomposition experiments of different plant materials. Decomposition is
reduced under vegetated conditions, compared to bare soil conditions.

The Linkages model (Pastor and Post, 1986; Pastor and Post, 1988) is a forest
growth—biogeochemical model which simulates C and N pools and fluxes over
the course of forest succession. Because litter chemistry varies with vegetation
composition, the decomposition of specific litter cohorts is modeled. This differs
from the ‘lumped’ pool approach for litter decomposition in the two models
described above. The decomposition rate of a specific litter cohort is a function
of evapotranspiration, a canopy gap factor (for microclimate effects), lignin and
N content and species-specific constants. At a certain stage of decomposition,
defined by a critical C: N ratio for each litter type, net N mineralization begins
and the remaining mass in the litter cohort is then transferred into a single
humus pool. Decomposition rate of the soil humus pool is controlled by the C: N
ratio of the humus, the gap/microclimate factor and a potential rate constant.
The model operates on monthly and annual time steps. The driving variables are
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monthly temperature and precipitation and soil water holding capacity (i.e., field
capacity and wilting point moisture).

3.2. Macro-scale models

The growth of global-level studies of biogeochemistry, vegetation dynamics
and climate has led to the development of another class of models which address
soil C change at very large spatial resolutions, typically thousands of square
kilometers. The primary objective of most of these models has been to model
global vegetation patterns and net C fluxes to and from terrestrial ecosystems. In
most instances their spatial dimensions are defined by latitude—longitude grid
cells. Compared to the ecosystem models described above, they have a simpler
structure (i.e., fewer plant, litter and soil components) and they employ more
general or ‘lumped’ rate controlling factors (e.g., precipitation, temperature,
‘soil type’). Arguably, process rates tend to be more empirical (e.g., regression-
like) in their formulation compared to ecosystem-level models. Attributes of two
of these models, the Terrestrial Ecosystem model (TEM) and the Osnibruck
model are described in Table 1.

The TEM model (Raich et al., 1991; Melillo et al., 1993) is designed to
simulate major C and N fluxes and pools at continental and global scales, based
on 0.5 X 0.5° latitude—longitude grid cells, with a monthly temporal resolution.
It has been used to simulate patterns of net primary production (NPP) and net C
flux for South America (Raich et al.,, 1991). It is designed to operate in
conjunction with a global water balance model (V6rdsmarty et al., 1989) which
provides soil moisture and evapotranspiration rates as driving variables to TEM.
A single detrital component (litter + SOM) is included and C levels and other
variables are assumed to be uniform within the grid cell. The main external
controls on decomposition rates are temperature and soil moisture, where
moisture effects on decomposition are also a function of soil texture, for which
five textural classes (sand, sandy loam, loam, clay loam and clay) are consid-
ered. The specific decomposition rate constant is determined by model calibra-
tion on each specific vegetation type.

The Osnibruck model (Esser, 1987, 1989, 1992) was designed to model
global vegetation patterns and C pools and fluxes of the biosphere. It has been
used to model changes in global NPP and C flux associated with historical
landuse patterns (Esser, 1989) and in response to global climate change and CO,
fertilization (Esser, 1990, 1992). The basic spatial resolution is a 2.5 X 2.5° grid
cell, but with multiple types of land cover represented as fractional areas within
each grid cell. The model operates on an annual time step. It includes herba-
ceous and woody litter pools and lignin derived from litter, which is used as a
surrogate for soil organic matter. Litter lignin contents, 30% for wood and 11%
for herbaceous litter, determine the C inputs to soil organic matter. Litter
production (i.e., C inputs to detrital pools) are determined by the balance of NPP
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and the net change in standing biomass C, which are calculated in separate
functions driven by temperature, precipitation, CO,, a soil fertility factor and
mean stand age. Specific decomposition rates for herbaceous and woody litter
and lignin (SOM) are modified by the minimum of either temperature and
precipitation limitations.

4. Implications of scale: model and data aggregation

The standard approach to regional analysis is to define a subdivision of
geographic areas for which unique sets of driving variables (e.g., climate, soil
properties and landuse) are derived and then supplied to the model. Most
regional /global studies treat each spatial unit as independent, i.e., there are no
interacting processes connecting them. An obvious limitation of this approach is
that ‘horizontal’ fluxes such as water, soil (i.e., erosion) and gaseous element
transfers between geographic areas cannot be explicitly represented. Models
which incorporate such two-dimensional processes have been developed for
ecosystem and landscape (e.g., watershed) level applications but to our knowl-
edge these approaches have yet to be applied to regional modeling of soil C
dynamics. While this represents an important future challenge, our focus in this
paper will be on existing approaches to regional modeling which assume spatial
independence.

The temporal and spatial resolutions of both model and data and how they are
integrated have a major influence on the error and uncertainty of regional
estimates. For ecosystem-level models, applications to areas larger than their
inherent scale (Table 1) is necessary for practical application at regional scales.
While macro-scale models, by definition, operate at regional scales, the data
required to run them may or may not be obtained at a commensurate scale. In
addition, the theory basis for coarse-scale models is generally derived from
fine-scale knowledge (Rastetter et al., 1992). Thus, in either case. aggregation of
data, models or both is necessary, although the main issues concerning aggrega-
tion are somewhat different for models operating at different scales. Aside from
fundamental issues of data and model validity, the key question for applying
ecosystem-level models to regional predictions is whether the degree of spatial
and temporal aggregation of data is commensurate with model formulations. For
macro-scale models, the fundamental questions concern both model aggregation
(i.e., can the factors that control SOM dynamics be successfully captured at
regional levels of resolution), as well as the acquisition and representation of
data (for model inputs) at coarse spatial and temporal resolutions.

4.1. Ecosystem-level models

Soil C models have developed within the disciplines of ecosystem ecology
and soil science, where the concepts, experimentation and data used to derive



236 K. Paustian et al. / Geoderma 79 (1997) 227260

these models pertained to fine spatial scales (on the order of square meters or
hectares), for which assumptions of spatial homogeneity in climate and soil
conditions were considered defensible. As these models are applied at coarser
spatial scales it is important to examine how the model responds to increasing
departures from these assumptions of homogeneity. It is well recognized that the
degree to which model relationships are non-linear has a large impact on the
magnitude of error introduced by aggregation (O’Neill, 1979; King et al., 1991;
Rastetter et al., 1992). For a non-linear function, the value of the function
evaluated at the mean of two or more function arguments (i.e., aggregated
variables) is not equal to the mean value of the function evaluated separately at
the values of each of the arguments. Examples of non-linear relationships in
some soil C models include the influence of soil texture on soil C stabilization
(as in the Century and Rothamsted models) and the effect of temperature on
decomposition, which is formulated as an exponential or @, type function in
most models. The amount of error associated with aggregation will depend on
the degree of non-linearity of the model and variability of the model variables
(e.g., state variables, driving variables) which are being aggregated (O’Neill,
1979; King et al., 1991).

As an example, consider the relationship between soil texture, C input rates
and soil C under steady-state conditions for Century and Rothamsted (Fig. 2).
Because of the non-linearity in the response to soil texture (expressed either as
sand content or inorganic CEC), an aggregation across two different soil textures
(e.g., as an area-weighted mean) introduces an error in the prediction of the
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Fig. 2. Relationship of soil texture to steady-state soil C levels in two models, Century (Parton et
al., 1987) and the Rothamsted model (Jenkinson et al., 1987). The relationship between texture
and soil C is non-linear in both models but differs in form, i.e., concave (upward) in Century and
convex (downward) in Rothamsted. See text for discussion on the degree of aggregation bias for
averaging soil textures.
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dependent variable, soil C. The severity of the aggregation error will increase
with the degree of disparity between soil textures and with the evenness in
distribution of different soil types (i.e., lack of dominance of a single soil type).
For example, compare the estimates of mean C levels for two soils calculated by
using an average of soil textural properties versus the amounts calculated for
each soil separately and then averaged, under steady-state conditions. Averaging
two soil texture types at the extremes of the ranges shown in Fig. 2. (i.e., 0 and
60% clay for Rothamsted or 20 and 80% clay + silt for Century) would give an
underestimate of mean steady-state C levels of 6% for Century, and an overesti-
mate of 9% for Rothamsted.

In contrast, aggregation errors are minimal when the relationship between the
independent variable (to be aggregated) and dependent variable is inherently
linear. For example, the relationship between C input rates and soil C is linear
(Fig. 2), due to the first-order assumptions governing decomposition in both
models (Paustian et al., 1997c). Thus, aggregation across levels of C input, if
other variables were constant, could be made without biasing the aggregate
results.

This interaction of aggregation level and the linearity (or non-linearity) of
model relationships was well demonstrated in a simulation study by Burke et al.
(1990) using the Century model (Table 2). They applied the model using inputs
(e.g., precipitation, soil texture) compiled at three levels (soil association, county
and multi-county) of spatial resolution. Both precipitation and soil texture were
calculated for each spatial scale using linear-weighted averages. Simulated
primary production, which responds in a strongly linear fashion to precipitation
(Parton et al., 1987), was insensitive to increasing spatial aggregation. In
contrast, soil organic matter levels were more sensitive to the scale of aggrega-
tion, primarily due to the effect of averaging soil texture (Burke et al., 1990).
Their results suggest that aggregation of soil texture at the soil association level
(~2.5 km?) up to the county level (ca. 1000 km?) did not introduce major

Table 2
Effects of differing spatial aggregation on model predictions of net primary production (NPP) and
soil organic matter carbon (SOM C) for a 4000 km? area of Northeast Colorado

Aggregation level

Soil association County Multi-county
Area resolution (km?) ~25 1500 4000
Number of aggregations () 768 10 1
Mean simulated NPP (g m~?) 184 186 (1%) 184 (0%)
Mean simulated SOM C (g m™?) 3135 3273 (4%) 2710 (— 14%)

Input variables were aggregated at three different spatial resolutions and then means of the model
outputs for each aggregation (n) were summed for the region. Values in parentheses show the
aggregation bias, relative to the finest scale used in the analysis (i.e., soil association). Adapted
from Burke et al. (1990).
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difference in model results, while a further aggregation to multi-county (ca.
4000 km*?) scales introduced a strong bias (Table 2). Thus, in the choice of an
appropriate spatial scale consideration must be given to the degree of hetero-
geneity of different model inputs, and their respective effects on aggregation
error, for the particular region being modeled.

One way to reduce aggregation bias in regional applications is to categorize
soil data at a sub-regional level and then produce area-weighted results of a
series of model runs. Kittel et al. (1995) developed a regional database for the
United States, scaled at 0.5 X 0.5° in which soil input variables were derived
from a cluster analysis of the dominant soil types described in a more detailed,
10-km gridded, soils database. Using this approach, a set of 1-4 modal soil
profiles were used in simulations for each 0.5° cell, rather than a set of averaged
soil properties which might not correspond to any actual soil in the region.

To reduce bias in aggregating multiple types of input data, Monte Carlo
procedures can be used to sample input data from joint probability distributions
of, for example, landuse and soil type. A Monte Carlo procedure for regional
analysis using ‘local-scale’ ecosystem models was devised by King (1993) and
applied to northern taiga and tundra regional ecosystems. In this study, the
Monte Carlo simulations used several sets of external driving variables (e.g.,
climate and other abiotic variables) selected from within-region probability
distributions to calculate an ‘expected value’ of net CO, fluxes for each region.

Climate factors (i.e., temperature and precipitation), which affect decomposi-
tion rates and the seasonality of primary production, vary with both space and
time. Thus, the effects of both spatial and temporal averaging of climate data
need to be considered. Temperature response functions used in decomposition
models are generally non-linear and thus are subject to aggregation error. In
modeling climate change effects for regions with distinct seasons, the predicted
response of primary producers and decomposers will be different depending on
whether changes in temperature and precipitation are distributed uniformly
through the year or with seasonal differences incorporated. In other words,
temporal aggregation of input data is another potential source of error. Ojima et
al. (1991) demonstrated the effect of using either monthly or annually averaged
output from a general circulation model (GCM) to predict soil C change in the
Great Plains of the United States (Fig. 3). The simulations show distinct
differences in predicted patterns of soil C for the same mean annual temperature
change, depending on whether temperature change was expressed on a monthly
basis or if it was ‘aggregated’ over the year.

Ecosystem-level models contain ‘chains’ or sequences of interacting pro-
cesses which can create complex non-linear behaviors that are highly sensitive
to driving variables and initial conditions. This is illustrated by the interactions
between soil texture, water holding capacity, vegetation development and soil C
in a simulation study of global change impacts on forests using Linkages (Post
et al., 1992). Simulations of forest stands in the boreal /northern hardwood



K. Paustian et al. / Geoderma 79 (1997) 227-260 239

A) Differences in aboveground NPP (g m2yr-) B) Differences in soil organic C (g m)
with monthly vs annual GCM climate with monthly vs annual GCM climate

Fig. 3. Effect of aggregating across time scales in predicting effects of increased temperature on
net primary production (NPP) and soil organic carbon (SOC) for the central United States. Maps
show differences between model predictions for the same mean annual temperature increase,
either distributed equally over the year (annual basis) or as monthly changes (monthly basis) as
computed in GCM simulations. Temperature changes that were averaged monthly gave higher
predictions of NPP in the southern United States (A) compared to using the aggregated mean
annual temperature change. Differences in SOC responses for monthly versus annually average
temperature change are shown in (B). From Ojima et al. (1991).

border in northeastern Minnesota were conducted, comparing changes for two
contrasting soils, with sand and silty clay loam textures respectively. In the
fine-textured soil, under increased temperature and CO,, there was no decrease
in available moisture while N availability increased, resulting in the replacement
of the mixed pine/hardwood forest by a more productive hardwood forest
vegetation (Fig. 4). In contrast, increased temperature and CO, sharply reduced
water availability in the sandy soil, resulting in a replacement of the
pine /hardwood forest by a stunted maple vegetation. These vegetational changes,
in turn, resulted in a sharp divergence in nutrient availability and productivity
levels, and thereby C input rates and long-term soil C storage. In such cases, the
response of a system defined by an aggregated soil texture would be very
different from the summed responses of the two systems.

In a whole systems context, the effects of aggregating driving variables can
also be considered from the perspective of a sensitivity analysis. In a compara-
tive analysis of zonal natural ecosystems of the Russian European region,
Ryzhova (1993) showed that the sensitivity of podzolic soils in northern taiga to
climate-dependent parameters was greater than the sensitivity of typical cher-
nozems in meadow steppes. Therefore, the errors introduced by aggregation
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Fig. 4. Sensitivity of ecosystem properties to soil textural effects in the Linkages model (Pastor
and Post, 1988). With warming and increased CO,, forest succession and species composition are
predicted to be different for coarse versus fine-textured soils, primarily due to differences in soil
water balance (a). This leads to radically different ecosystem responses in soil variables such as N
availability and litter + soil organic matter levels (b). Adapted from Post et al. (1992).

would be greater for the more sensitive system at a given degree of spatial
aggregation, i.e., the aggregation errors for northern taiga should be larger than
for meadow steppes. Moreover, aggregation errors would be larger if the
area-averaging were made near the boundaries of soil-vegetation zones, where
the sensitivity of the ecosystems to some climate parameters increased.

4.2. Macro-scale models

In principle, coarse scale models of regional soil C dynamics should be
derived from the development of theory and experimental results that are
commensurate with a coarse scale of resolution. In practice, however, most of
our knowledge of ecosystem processes is fine-scale. Moreover, our ability to
conduct measurements and experiments at coarse spatial scales, in order to
derive new theory operative at such scales, is highly constrained. Consequently,
one of the main issues confronting macro-scale models is how to aggregate and
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simplify fine-scale knowledge and information into a model configuration
appropriate to coarser spatial scales.

Macro-scale C models have been simplified in comparison to ecosystem-level
models in a variety of ways, including reduction of the number of detrital and
soil C pools considered (Table 1), including fewer rate controls (e.g., excluding
soil texture effects on C stabilization) and including aggregation of processes
and rate controls (e.g., representing litter quality as woody and herbaceous
material with fixed attributes versus considering a range of litter qualities).

Rastetter et al. (1992) identified several techniques by which fine-scaled
relationships can be scaled-up, including rigorous statistical procedures to
determine the error introduced through model aggregation. Of these techniques
the most common is that of calibration, in which the ‘derived’ model is
calibrated and parameterized to regional-level data. Ideally, calibration would be
performed using regional-level measurements (e.g., from remote sensing) of
model output variables. In practice, the quality and interpretation of remotely-
sensed data are probably not yet suitable for model calibrations and to date most
use of remotely-sensed data has been for purposes of model comparison and
evaluation (e. g., Running et al., 1989; Burke et al., 1991). An alternative method
is to use data from multiple sites across a region to parameterize and generalize
the model. For calibration of the TEM model, NPP estimates from twelve sites,
presumed to be representative of the seven vegetation types simulated for South
America, were used (Raich et al., 1991). Cross-validation tests, using six
different calibration sites yielded estimates of NPP within 20% of observed
values for tropical evergreen forest sites, which was similar to the uncertainty in
the measured productivity. While these and other results provide confidence that
large scale patterns in productivity can be successfully modeled, analogous
validations of simulated soil C patterns at these scales have not yet been
reported.

There may be practical limits to aggregating soil C models to large scale
applications, particularly under non-equilibrium conditions. Most macro-scale
models represent soil organic matter by only one or two pools. While there is
controversy as to the most appropriate model representation of soil organic
fractions and how they can be measured or deduced (Paustian, 1994), there is a
general consensus that several discrete fractions (Jenkinson et al., 1987; Parton
et al., 1987) or a continuum of varying decomposability (Bosatta and Agren,
1985) are needed to represent the kinetic heterogeneity of soil organic matter.
Under steady-state conditions this is not a major concern since mean turnover
rates and relationships between soil C levels and rate controlling factors (e.g.,
climate, soil texture, litter quality) can be made equivalent for single pool
models and models which include multiple SOM fractions. However, under
transient dynamics (e.g., following deforestation, changes in climate, new
management practices) highly aggregated models with a single SOM pool are of
limited value. For departures from steady-state, single pool models may severely



242 K. Paustian et al. / Geoderma 79 (1997) 227-260

1 0000-1
9000
2 TEM(1=600)
8000
& 70007 K Century (1=600)
€ 6000
o)
S’
O 50004
= 4 Century (1=200)
QO 40004
w
30004
2000.‘ K TEM (1=200)
1000
C T 1 1 1 T T 1 L . 1
Q 10 20 30 40 50 60 70 80 90 100

Years

Fig. 5. Comparison of transient state dynamics of a highly aggregated decomposition model
(TEM, Raich et al., 1991) and a disaggregated multi-compartment model (Century; Parton et al.,
1987). The models were parameterized to yield identical soil C levels under steady-state
conditions (e.g., 5500 g C m™~2 with annual input of 400 g C m™?). With a change in C input (I)
of 200 g m~? yr~', the time period to reach 90% of the new equilibrium value is 17 years for
TEM and 220 years for Century.

overestimate soil C changes in the short-term, because the slower response times
of older soil organic matter fractions cannot be adequately represented (Fig. 5).
Thus, the use of models with multiple SOM pools is more appropriate for
investigations of transient dynamics. Aggregating kinetically different SOM
pools is equivalent to a series aggregation as defined by Gardner et al. (1982),
who recommended against such aggregations where turnover times vary by
more than a factor of three.

5. Use of spatially-resolved soils databases for regional C modeling

Models being used for regional analyses can make predictions of soil C based
on a relatively small number of input variables. The information required
includes climate variables, certain soil characteristics, vegetation attributes and,
in the case of managed ecosystems, information on management and landuse
practices. Of these requirements, climate data is the most readily available for
regional analyses. This is not to say that model predictions could not be
enhanced by more and higher quality climate information. However, relative to
other data needs, the availability of climate information is probably not a
limiting factor and will not be discussed further in this paper.
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Vegetation type, distribution and productivity are key inputs to soil C models,
both for specifying litter quality factors (e.g., lignin content) and for determining
C input rates and location (i.e., above versus belowground). However, many
models used for regional soil C predictions are coupled production—decomposi-
tion models which predict productivity on the basis of climate and soil parame-
ters. Therefore, we will not address vegetation and land cover databases in
detail. We will focus on issues dealing with the use of soils data, and to a lesser
extent landuse and management databases with respect to their potentials and
limitations for integration with models.

The primary function of spatially-referenced soils data is to provide initializa-
tion values, such as soil texture (e.g., Century, TEM), cation-exchange capacity
(e.g., Rothamsted) and water holding capacity (e.g., Linkages) or the informa-
tion necessary to derive these values (e.g., texture and mineralogy to estimate
CEC). Secondly, soils databases can provide information to evaluate the perfor-
mance of the models.

A variety of regional-level soils information is available including national
soil surveys, the FAO global soils map, USDA’s soil pedon database and others
(Bouwman, 1990; Groenendijk, 1990; Eswaran et al., 1993; Bliss et al., 1995).
Although these data sources differ in their characteristics, we will discuss some
of the problems and limitations of regional soils databases for modeling
applications, using as an example the soil survey data for the United States. This
database is among the most extensive in existence and as such represents a ‘best
case’ scenario for modeling; data sources from much of the tropics present
additional problems and uncertainties.

A limitation of most soil characterization data is that the original purpose for
sampling the soils was not to estimate or model soil C, but rather to characterize
soil properties for agriculture and engineering applications (USDA, 1991). For
example, soil information prepared by the United States Department of Agricul-
ture—Natural Resources Conservation Service (USDA-NRCS) for distribution
with their State Soil Geographic database (STATSGO) maps (USDA, 1991)
report organic matter instead of organic C, available water holding capacity
instead of values required to derive a water retention curve (i.e., water retained
at 0.3 and 1.5 MPA), and information about bulk density or cation properties are
often omitted. Thus, basic data for model algorithms may not be directly
obtainable.

An additional purpose for soil survey is soil classification (Olsen, 1981), in
which field measurements and laboratory analyses are used to describe soils as
they exist in the field at sampling time (Smith, 1986). However, using soil
characterization data to estimate C content in the soil would be misleading if
changes in landuse, vegetative cover, climate, or other conditions that would
affect C dynamics have occurred since sampling. Both organic and inorganic
forms of C are part of the suite of analyses performed for soil classification
purposes (Olsen, 1981). However, perusal of the soil characterization data shows
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that a laboratory measurement of C was not always made for each sample, and
methods used to determine laboratory C content were not always consistent. In
addition, soils which may represent a large sink of C such as forest soils, frozen
soils, or organic (Histosols) soils were not always sampled since these are not
generally used for agricultural purposes. In the case of Histosols, samples may
not have been taken to sufficient depth to account for the large quantity of
subsurface C they may contain. With these sampling problems, gross underesti-
mates of soil organic C contents may occur. Thus, while the database does
contain a great deal of information about soil properties, there are many missing
or inconsistent pieces of information which constrain its use to estimate organic
C amounts and interpret C dynamics.

Additional problems with the database are found in the data presentation and
availability. A large data set of soil pedon data exists in digital form, but it is
often difficult to use or has gaps in information, Not all samples are georefer-
enced, making sites difficult to locate or use in a geographic information system
(GIS) format. Information is limited mostly to soils of the United States.
Although there are data for international sites, many important areas are
missing. Many additional data sets are available, but have not been put intc
digitized format for computer accessibility (Mielke et al., 1993).

Additional data sets are being developed which will improve some of the data
quality issues mentioned above. These include the International Geosphere /Bio-
sphere Programme (IGBP) soil data task group which is attempting to assemble
a global database of profile descriptions and analytical measurements sufficient
in quantity to characterize the range in major soil types (Scholes et al., 1995).
The goal of this group is to provide quality controlled data with geographical
and pedological gaps filled in from verifiable sources, provide tables of sum-
mary data, and spatially link data with the FAO/UNESCO Soil Map of the
World (FAO /UNESCO, 1971).

The use of soil characterization data sampled at a county scale for agricultural
purposes poses an additional problem when attempts are made to scale the
information to larger areas. In these surveys, mapping units are aggregated for a
minimum size based on map scale. Thus, some important features may be
overlooked if they are smaller than minimal ‘pixel size’, e.g., wetland inclusions
within a larger drier area can contain a large reservoir of carbon which may be
overlooked. Underestimates of soil carbon, for example, were shown by David-
son and Lefebvre (1993) in a study of soils in Maine because small forested
areas and organic soils had not been differentiated in the state STATSGO soil
map as compared to the county soils data. Thus, understanding the purpose and
sampling strategy for obtaining the data is critical before soils data can be used
in a meaningful way.

Finally, there is no consistent data format which encompasses differences
between horizons, profiles or landscapes. A general guideline for some data
manipulation is given by the National Soil Survey Laboratory (1983), but this
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document is not readily available to the general scientific community, and again,
does not include all ‘ecology based’ scenarios for scaling or aggregating
purposes. Data aggregation remains a key issue as to how data should be treated
(e.g., summed or averaged with various weighting factors), to what depth should
measurements be aggregated (e.g., to common depth across profiles or for actual
total depth for each profile), how missing data should be handled, how to
compare data between profiles (e.g., by horizon, by depth, by master horizon, or
with single value for the total soil). Each of these different methods has been
used by researchers (Johnson and Kern, 1990; Webb et al., 1991, 1993; Levine
et al., 1994) and thus understanding the dynamics of the soil system may
become confounded by inconsistencies in methodology.

6. Future challenges and opportunities
6.1. Refinement of soil C maps

Soil maps at scales ranging from local to global are available in digital form,
and can provide data for modeling soil carbon on a spatial basis. In the United
States, the State Soil Geographic data base (STATSGO) (1:250,000) and
National Soil Geographic Database (NATSGO) (1:1,000,000) produced by the
USDA-NRCS can be used for meso-scale (areas approximately 1 million km?),
and can be generalized for global modeling of carbon. The Soil Survey
Geographic Database (SSURGO) corresponds to the county level, and is
presently being encoded (Bliss et al., 1995). Attribute data corresponding to
mapping units for each of these products can provide the input required for
carbon modeling at the appropriate scale (e.g., organic matter content, texture,
slope, drainage class, erosion status).

On a global scale, the FAO /UNESCO Soil Map of the World (FAO /UN-
ESCO, 1971) remains the best map of soil distribution, although attribute files
containing information about carbon and variables required for carbon modeling
are not linked with mapping units. To remedy this, other global products have
been adapted from this map, or are being developed (Webb et al., 1991;
Eswaran et al., 1993) from which global carbon inventories have been or can be
estimated.

Estimates of soil organic carbon (SOC) have been made from these soil maps
to provide inventories at varying scales (Kimble et al., 1990; Kern, 1994; Bliss
et al., 1995). A general algorithm for deriving these estimates is described by
Bliss et al. (1995) as: CL = 5800 X (ODRT), where CL is organic carbon for a
layer (g m~?), O is organic matter at the midpoint of the layer (g per 100 g
soil), D is bulk density at midpoint of the layer (g cm ™~ fine soil fraction), R is
rock fragment conversion factor, 7 is thickness of the layer (m), and 5800 is a
constant that includes both unit conversions and relates organic matter to organic
carbon.
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Results vary when using this equation depending on the number and thickness
of layers, and the types of soils included in the estimation. For example,
Histosols were not included in the study of Kimble et al. (1990), and other
studies are concerned with C contents to a constant depth, versus their total
distribution in soils of varying depths (Eswaran et al., 1995). Also, the impact of
missing data on C estimates is not known (Bliss et al., 1995). However, products
which combine soil maps and information such as those with remotely sensed
imagery, digital elevation data, other terrain maps and models using GIS, help
fill in missing information.

For problems related to missing values and scale in soil data, neural networks
may represent a useful modeling approach. Neural networks have the ability to
learn patterns or relationships in data from a given set of inputs (including
combinations of descriptive and quantitative data), they can generalize or
abstract results from imperfect data, and they are insensitive to minor variations
in input (such as noise in the data, missing data, or a few incorrect values).
Thus, they are well suited for studies using soil characterization data. In a recent
study, Levine and Kimes (1997) used neural networks to predict the amount of
organic C in individual horizons for Mollisols in the midwestern United States
using the USDA-NRCS Soil Pedon Database. Values were predicted for
missing bulk density values using a neural net approach. Once the bulk density
values were added to the data set, the best neural network estimates predicted
percent organic carbon with 87% accuracy in individual horizons. Neural nets
were able to discern subtle relationships between C and physical soil properties
(e.g., density, depth, particle size) which control the rate of decomposition of
organic matter, as well as chemical properties in the soil (e.g., nitrogen, base
saturation), which can possibly be related to the type and amount of vegetation
growth. With these results, neural networks show great potential for studies
using existing soil pedon information.

6.2. Modeling landuse effects on soil C

Determining the impacts of landuse and management on amounts and distri-
butions of C in tropical soils is an important area for applying regional scale
analyses. When native vegetation is cleared and the land put into cultivation soil
C can be substantially reduced (Greenland and Nye, 1959). Variability is high,
but on average 20 to 30% of the C in the top meter of soil is lost (Mann, 1986;
Post and Mann, 1990; Davidson and Ackerman, 1993), much of it in the first
few years following conversion. Other disturbances such as conversion to
pastures, shifting cultivation and logging followed by forest regrowth, generally
have a smaller effect on the amount of soil organic matter (Lugo et al., 1986;
Cerri et al., 1991; Van Noordwijk et al., 1997). Afforestation and reforestation
may result in accumulation or loss of soil C depending on the C content of soils
under newly established plantations, the productivity of the young vegetation,
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and other environmental factors (Billings, 1938; Schiffman and Johnson, 1989;
Brown and Lugo, 1990; Harmon et al., 1990). While less dramatic, the use of
different management practices in permanent agricultural lands can also substan-
tially affect soil C levels (Lal, 1986; Paustian et al., 1997a). Thus, data on
landuse and management are a critical component of regional analyses of soil C.

Until relatively recently, information on land cover and landuse has not been
available in digital format and therefore has not been readily useable for regional
modeling. Currently, the availability of digital land cover/landuse, based on
existing vegetation maps (Matthews, 1983; Matthews, 1990) or derived from
satellite imagery (Loveland et al., 1991), is growing. This information can be
incorporated along with soil and climate data into a GIS format and interfaced
with models, both to provide input data (Running et al., 1989; Potter et al.,
1993) and for validation (Burke et al., 1991; VEMAP, 1995). Remote sensing
can also be used to quantify gross changes in landuse over time. For example,
deforestation rates in parts of the Brazilian Amazon have been estimated from
time sequences of satellite data (Skole and Tucker, 1993; Moran et al., 1994).
Analyses of the spatial patterns of forest clearing and subsequent changes in
vegetation cover over time (i.e., maintained in crops versus abandoned to forest
regrowth) has provided a better understanding of the dynamics of landuse
change and the processes which control it (Skole et al., 1994).

Within a particular category of landuse, the specific management practices
used can have a substantial effect on soil C dynamics. This kind of information
is, however, not generally obtainable through remote sensing. Traditional agri-
cultural statistics and survey data are the main source of information, but for
subsistence agriculture in many areas of the tropics, data on management
systems may be entirely lacking (P. Woomer, pers. commun.). Even more
limited is information on the joint distribution of management systems and soil
types. Surveys which have been conducted on management practices in subsis-
tence agriculture reveal considerable variability in the frequency and type of
practices used. For example, Table 3 shows the frequency of different manage-
ment practices within a single landuse type (subsistence agriculture) in some
agricultural districts in Uganda. Seward and Woomer (1993) modeled maize
production and SOM changes in such systems to assess the effects of manage-
ment. Their results suggest that erosion control, residue incorporation and
manure application could greatly influence SOM levels and the long-term
sustainability of the production system. For areas dominated by managed
ecosystems, it is clear that our ability to make projections of changes in soil C at
the regional level is highly dependent on type, distribution and dynamics of
landuse systems.

Landuse and management systems are not static but change with the develop-
ment of new technologies, climate trends, altered economic conditions, govern-
ment policies and other socio-economic factors. A major challenge is to improve
our understanding of the human factors which drive landuse change and how
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Table 3
Frequency of different management practices employing organic matter or fertilizer additions for
subsistence farmers in several agricultural districts in Uganda

District Farmers practicing (%) n
Manuring * Mulching ° Grass bunds Fertilizers ¢

Rukungiri 83 68 32 0 96
Kabale 49 7 45 0 101
Bushenyi 54 2 0 0 100
Mpigi 21 41 18 9 102
Iganga 8 11 30 4 115
Mbale 9 0 52 6 106
Gulu 1 5 64 0 92
Nebbi 0 0 14 0 94

After Tukahirwa (1992), as cited in Seward and Woomer (1993)
* Use of livestock manure.

® Does not include mulching of bananas.

¢ Use of inorganic fertilizers.

they interact with the biophysical environment. This includes understanding both
past and future landuse changes as current trends in soil organic matter pools are
influenced by previous landuse histories. Thus, information on soil organic
matter status, landuse, and associated properties (i.e., amounts and types of
organic matter inputs and climate) needs to be quantified for the previous
several decades. Riebsame et al. (1994) developed a conceptual model which
links the human environment (represented by economics, technological, policy
and socio-cultural factors) with ecosystem processes and properties, in determin-
ing patterns of landuse and management for the United States Great Plains (Fig.
6). The development of such analytical strategies are urgently needed in the
tropics to provide a framework for assessing future changes in soil C and other
important ecosystem properties at the regional scale.

6.3. Linking soil C models with remote sensing

Measurements of ecosystem attributes at regional scales can be obtained
directly through the use of remote sensing techniques, making remotely sensed
data an important complement to simulation models. Satellite imagery in
particular is being used increasingly in a variety of ecological applications
(Roughgarden et al., 1991), especially for quantifying land cover and plant-driven
processes (e.g., photosynthesis, evapotranspiration). Fung and Tucker (1986)
indicated the need for understanding soil conditions (including nutrient and
moisture content) and how these affect vegetation dynamics and effluxes of CO,
and other trace gases for better interpretation of satellite imagery. With present
technology, chemical and physical properties of soils (e.g., soil carbon, nutrient
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Fig. 6. A conceptual model of agricultural landuse in the Great Plains region of the United States.
Driving variables associated with socio-economic and political systems (‘human environment’)
and the biophysical factors affecting ecosystems interact to determine patterns of landuse and
management and thus ecosystem properties and dynamics. Modified from Riebsame et al. (1994).

content, drainage class) cannot be directly observed by satellite. Thus, re-
searchers attempting to draw inferences concerning soil characteristics must rely
on surrogate indices, such as vegetation status or albedo, biomass estimates and
surface soil moisture or temperature, combined with modeling techniques to
assess soil properties. The long-term goal of such research is to identify and
characterize satellite measurements that may be used to infer gross soil charac-
teristics beneath a vegetation canopy (Merry and Levine, 1995).

An example of a surrogate for soils for remote sensing is the use of the
normalized difference vegetation index (NDVI) (Gates et al., 1965; Tucker,
1979). NDVI has been linked with various aspects of vegetation dynamics
which can then be indirectly related to the underlying soil properties. Correla-
tions have been made between NDVI and properties such as leaf area index
(Curran, 1983; Asrar et al., 1984), vegetational seasonal dynamics (Justice et al.,
1985; Tucker et al., 1985), net primary productivity (Goward et al., 1987), and
seasonal variations in atmospheric CO, (Tucker et al., 1986).

The relationship between soil and vegetation properties shown with NDVI
was investigated for South America by Levine et al. (1987). A black and white
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rendition of a 3 year composite (1982-1985) NDVI image (Fig. 7, top) is
compared with a digitized version of the FAO soil map of South America (Fig.
7, bottom). Visual comparison of these show many areas where soil mapping
units are similar or identical to NDVI patterns. In their study, Levine et al.
(1987) co-registered the NDVI image and soil map, and performed statistical
analyses on a number of control points from each data source. Results showed
low but positive correlations between NDVI and soil properties such as base
saturation, acidity, water holding capacity, and bulk density when soils were
clustered into climate groups.

A study by Lozano-Garcia et al. (1991) also used NDVI from advanced very
high resolution radiometer (AVHRR) to determine soil / vegetation relationships,
but over a smaller area (the state of Indiana). Their work showed clear
relationships between soil ‘associations’ (a map unit used in soil survey made up
of two or more soil series) and phytomass development. Land cover type, soil
texture, and water holding capacity within soil associations all have strong
effects on NDVI (Levine et al., 1994). In a study at the Northern Experimental
Forest at Howland, Maine, Levine et al. (1994) found soil properties, and
especially soil drainage class were well correlated with vegetative growth, as
explained by NDVI. Soils falling within the moderately well to well drained
class had the highest NDVI values, while very poorly drained organic soils, or
those formed from recent alluvium, had the lowest NDVI values.

Ecosystem models can utilize NDVI or other indices of primary production to
evaluate temporal and spatial patterns of primary production as simulated in
models. In both native and agricultural ecosystems, soil organic matter levels are
often closely related to the amount of C added to soil (Agren et al., 1996;
Paustian et al., 1997a). Carbon input rates are primarily a function of primary
production and plant life histories (e.g., annual, herbaceous perennial, woody
perennial). The use of remotely sensed production indices to evaluate simulated
production rates can provide a measure of confidence for this important determi-
nant of soil C distributions.

In a regional analysis of forest ecosystems in Montana, Running et al. (1989)
found good correspondence between leaf area index (LAI) as estimated from
AVHRR /NDVI data and field measures of LAI. Using the LAI values to
initialize a simulation model, annual photosynthesis and evapotranspiration were
computed and mapped for the 1500 km? region. Simulated photosynthesis using
this approach was strongly correlated to field measures of forest stand growth.
Similarly, Burke et al. (1991) used NDVI to evaluate simulated NPP for a
three-state region in the central United States for a year with normal precipita-
tion and a drought year. Comparison with the NDVI data and field measure-
ments suggested that the model underestimated production in drought-stricken
areas but that simulated NPP with normal precipitation was closely correlated to
the regional pattern of NDVI. While the use of remote sensing data for model
validation is not without problems, these examples illustrate the potential uses of
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Fig. 7. Maps of South America showing: (top) normalized difference vegetation index (NDVI)
from the advanced very high resolution radiometer (AVHRR) at a spatial resolution of about 15
km. Data are from 3 week periods of the NOAA global vegetation index product composited over
a 3 year period (1982-1985), provided by the Global Inventory Mapping and Monitoring group
(GIMMS) at NASA's Goddard Space Flight Center; (bottom) digitized version of soil map from
FAO/UNESCO (1971) at a scale of 1:5,000,000.
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such information to identify and help correct model weaknesses in regional
applications.

Some NPP models, such as the Carnegie—Ames—Stanford Approach (CASA),
use remotely sensed data as drivers (Potter et al., 1993). In CASA, NPP is
driven by the fraction of photosynthetically active radiation (PAR) absorbed
annually by green vegetation, where PAR is based on a linear function of NDVI
(Potter et al., 1993; Field et al., 1995) and incident solar radiation.

Estimates of biomass and aboveground forest type, another possible surrogate
for soil carbon, have been predicted using radar in combination with radar
backscattering models. Biomass predictions using data from a 1991 overflight 01'
AIRSAR over the Northern Experimental Forest at Howland, Maine gave an r*
of 0.83 when compared with field measured biomass values (Ranson and Sun,
1994). Aboveground forest type was classified with 80% accuracy for a forest in
Saskatchewan, Canada using spaceborne imaging radar-C (SIR-C) and X-band
synthetic aperture radar (XSAR) data (Ranson et al., 1995). Image calibration
and environmental conditions affect the accuracy of these techniques so that
additional field work needs to be done for improved accuracy of first type
classifications.

Other variables can act as drivers for models to predict carbon. Soil moisture
and surface temperature, for example, can provide inputs to carbon models to
predict rates of decomposition or plant growth on a land cover type or
ecosystem basis. Active and passive microwave measurements have potential for
producing values for soil moisture because of the great difference between the
dielectric properties of liquid water and dry soil (Ulaby et al., 1986). These
predictions are complicated by surface conditions, however, so that microwave
measurements must be coupled with information on vegetation and surface
roughness (Engman and Chauhan, 1995). Similar problems exist with thermal—
infrared measurements of the surface temperature in which unknown surface
emissivities, atmospheric corrections, and other variables affecting the relation-
ship between thermal radiance and partitioning of surface energy fluxes compli-
cate the data (Norman et al., 1995).

Thus, while remote sensing remains a powerful tool for providing surrogate
measures of soil carbon, or driving variables for soil carbon models, much work
needs to be done to provide accurate and dependable estimates from this source
(Sellers et al., 1995).

6.4. Interfacing soil C models with climate models

Models have been used to evaluate potential climate change effects on soil C
at local (Cole et al., 1993; Woomer, 1993; Paustian et al., 1996), regional
(VEMAP, 1995) and global scales (Jenkinson et al., 1991; Ojima et al., 1993;
King et al., 1997). For regional simulations of climate change effects, bridging
the gap between spatial scales used in general circulation models (GCM) and the
scales appropriate for ecosystem-level models remains a major challenge.
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The problem of ‘scaling down’ the outputs from GCM simulations for
regional applications have been addressed using both empirical and model-based
approaches (Schimel, 1994). One empirical approach is to use local weather
records or statistics to filter the output from GCMs. For example, the VEMAP
database (Kittel et al., 1995) uses the difference between current and future
climate GCM results and interpolates them using historical weather station
averages of monthly climate variables. Another empirical approach is to use
statistical weather generators to modify GCM outputs so that effects of topogra-
phy and elevation can be incorporated (Schimel, 1994). Because empirical
approaches rely on past history as part of their inference of future climate
conditions, they are subject to criticism for extrapolation beyond the range of the
data. Moreover such approaches cannot capture the indirect effects of ecosys-
tem—climate interactions, such as climate-induced changes in vegetation feeding
back on regional climate. However, because of their strong empirical basis they
may provide the best estimates of near-future climate conditions at regional and
sub-regional scales. A more mechanistic model-based approach is to use a
regional /mesoscale meteorological model driven by GCM output to generate
finer scale climate predictions (Kittel and Coughenour, 1988; Georgi, 1990).
This technique is referred to as ‘nesting’ (Schimel, 1994) and it can incorporate
some of the dynamic interactions between sub-regional features such as clouds,
topography and vegetation. Improvements in the simulation of regional patterns
of precipitation have been demonstrated using this technique (Georgi, 1990)
provided the large scale boundary conditions simulated by the GCM are well
represented.

Similarly, improvements are needed in ‘scaling up’ soils and vegetation
information needed in GCMs. Previously, soils information used in general
circulation models was highly simplified. Spatial distribution of soils was
generally assumed to be uniform across the landscape, and averaged surface soil
parameters such as a ‘texture’ or ‘water holding capacity’ were assumed,
usually incorrectly, to be representative of the total soil profile (Hansen et al.,
1983; Henderson-Sellers et al., 1986; Sellers et al., 1986; Fung, 1992). As
models become more sophisticated (Abramopoulos et al., 1988; Levine et al.,
1993) more realistic data for soil properties within profile horizons are required
to simulate feedbacks between global change and soil processes.

Finally, regional models of climate change effects on soils and other ecosys-
tem components will become more informative when the interactions between
ecosystem and atmospheric processes are fully coupled. Most existing regional
analyses can be characterized as incorporating one-way interactions, where
atmospheric models provide inputs to ecosystem models or vice versus, but
feedbacks between the two systems are not included (Pielke et al., 1993).
Temperature and precipitation patterns are, however, affected by changes in
vegetation and soil properties, which may either dampen or reinforce changes in
these ecosystem properties. The development of coupled atmospheric—terrestrial
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ecosystem models will significantly enhance our abilities to evaluate and plan
for future environmental change.
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