Shuttle Radar Topography Mission Visualization of Earth Landscapes

Robert E. Crippen

NASA Jet Propulsion Laboratory Pasadena, California, USA crippen @ jpl.nasa.gov

Santa Cruz Island, California

50 meter contours

National Elevation Dataset

Santa Cruz Island, California

Shaded Relief

National Elevation Dataset

Santa Cruz Island, California

Anaglyph

National Elevation Dataset

Where and what is this?

Where and what is this?

Grand Canyon, Arizona

DEM anaglyph illuminated from South

Grand Canyon, Arizona

DEM anaglyph illuminated from North

Grand Canyon, Arizona

View from Hell

Grand Canyon, Arizona

DEM anaglyph with Landsat illumination from Southeast

Molokai, Hawaiian Islands
Landslide, Erosion, Volcanism

Maui, Hawaiian Islands
Erosion \& Volcanism: Alternating Episodes

Kohala Peninsula, Island of Hawaii
Rifting, Landsliding, Erosion
Interactions

Island of Hawaii

Landsliding, Erosion, \& Volcanic Deposition
Interactions

Blue Cut Fault, Pinto Basin, Joshua Tree National Park

Landsat Thermal Band with Elevation

Mars: Victoria Crater (730 m wide)

Opportunity Rover

TOPICS

- SRTM Mission \& Data
- Visualizations \& Detections
- Interpretations \& Understandings
- Topographic Change Measurements
- Planetary Analogs
- Recent Natural Hazards

Shuttle
 Imaging
 Radar SIR-C

Detection of Subsurface Ancient Path of Nile River

Comparison To Landsat

Shuttle Radar
Topography Mission SRTM

February 2000

Accuracy Results

Accuracy tests

- NIMA verification with DTED, other data sources
- USGS comparisons to National Elevations Data sets, GPS arrays
- Comparison to static and dynamic GPS elevations

All show data exceed 16 m vertical, 20 m horizontal accuracy specs by factor of 3-4

Elevations clearly show patterns of tropical forest clear-cutting with height differences of 4-5 meters

Rondonia, southwest Brazil

Vegetation Effects in SRTM SRTM minus NED

Grand Canyon, Arizona

San Francisco: SRTM - NED Comparison

NED Shade
National
Elevation
Dataset

SRTM minus NED
Different Surfaces \&
Topographic Change

Landsat
Vegetation, Buildings, Fault Lines

SRTM: Areas with Prominent Voids

Voids are Associated with Steep Slopes or Low SNR

Mission Coverage: 60 N to 56 S

SRTM Void Handling

Voids in Black

Voids Patched

Anaglyph
Andes Mountains (S 15.5 W 72.9)

SRTM / ASTER Merged DEMs: Void Filling

ASTER DEMs can seamlessly fill SRTM voids with lower grade data, but superior to interpolation.

ASTER Shaded Relief

= ASTER Voids
= SRTM Voids
$=$ Voids in Both

SRTM Shaded Relief
SRTM voids filled by ASTER after 3-D registration.
Voids in both are interpolated.

Filling SRTM Voids: The Delta Surface Fill Method Grohman, Kroenung, and Strebeck PE\&RS March 2006

1. Spatially match the two DEMs
2. Calculate the DEM difference (retaining holes)
3. Interpolate across the DEM difference holes
4. Add DEM difference to the "other" DEM

RESULT:

- SRTM values remain unchanged
- SRTM holes are filled by rubbersheeting of the other DEM

Measuring Elevation with ASTER Nighttime Thermal Imagery

Indus Canyon, Pakistan, voids filled

- In rugged terrain, is the relationship between elevation and nighttime temperature pure enough, and is ASTER sensitive enough, to fill voids in SRTM elevation models?
- Environmental lapse rate $6.5^{\circ} \mathrm{C} / \mathrm{km}$. ASTER NEAT $=0.05-0.07^{\circ} \mathrm{C}$. Thus, ASTER elevation-equivalent vertical resolution potential $=8$-14 meters (similar to SRTM, as is pixel size).
- Results: Greatly superior to simple interpolation, but would require refinements for fully satisfactory use.

Geophysical Research Letters
Crippen, Hook, \& Fielding, January 2007

SRTM and NED Systematic Errors

NED Quad Mis-Locations

Anaglyph

Desatoya Mountains, Nevada
Brightness $=$ SRTM minus NED
NED Quads Shifted to East

DEM Production Error: SRTM or NED ?...

Anaglyphs

SRTM minus NED
Mountain Top Elevation SRTM > NED

$$
\Delta=16 \mathrm{~m}
$$

SRTM
Anaglyph
Close-up

NED
Anaglyph
Close-up
Error: NED

National Geospatial-Intelligence Agency Edited Data

Water Bodies \& Minor Voids

SRTM Data Downloads

\sim One Quad per Second $=\sim 3$ Million Quads per Month

Total SRTM United States and Global Data Delivered By Area From SDDS and FTP

[^0]

Current Issue!

March 2006 Issue

Photogrammetric
Engineering \&
Remote
Sensing

STS-9า MIssion Operations JSC

Southern
 Oman Coast

Landsat
over SRTM DEM

Anaglyph

Topographic Funneling of Sand

Mauritania

Mount Ararat

Mt. St. Helens, View to Portland, Oregon

Mt. St. Helens, View to Portland, Oregon

Nyiragongo Volcano Eruption

January 2002

Map View

Perspective

Landsat color, ASTER lava map, SRTM DEM
Goma, Democratic Republic of Congo

SRTM Elevations for Southern Florida

Colored Height
5 \& 10 Meter Sea Level Rise

Salt Lake City, Utah

Pleistocene Lake Bonneville "Bathtub Ring"
Landsat over SRTM DEM

Malaspina Glacier, Alaska

ASTER Image over SRTM DEM

Cape Town, South Africa

Cape Town, South Africa

Zagros Mountains, Iran

Los Angeles, California
Landsat over SRTM DEM

Los Angeles, California
San Gabriel Mountains
"Malibu to Mount Baldy"

Los Angeles, California
San Gabriel Mountains
"Malibu to Mount Baldy"

New Information from SRTM

Nigeria and
 Cameroon

SRTM Shading And Height

New Information from SRTM

Bora Bora, Tahaa, Raiatea

Crater Highlands, East Africa Rift

SRTM Shaded Relief Perspective

Chicxulub Crater

Structure is defined by chain
of 5-10 meter deep sinkholes

Iturralde Structure

- Suspected 8 km impact crater in Bolivia discovered on Landsat image in 1985.
- May be youngest (5-10 kyrs) large impact crater
http://www.blueiceonline.org/

Southwestern Amazon

Great Lakes

Glacial Moraines

Davenport Ranges, Australia
$270 \times 145 \mathrm{~km}$
Maximum local relief $\sim 60 \mathrm{~m}$

Alpine Fault, New Zealand
$495 \times 162 \mathrm{~km}$

Right Eye Image

Left Eye Image

To view stereo pair above, cross eyes slightly until a third white dot appears between the two. New center image is 3D!

Tweed Extinct Volcano, Australia

-

Right Eye Image

Left Eye Image

To view stereo pair above, cross eyes slightly until a third white dot appears between the two. New center image is 3D!

Tweed Extinct Volcano, Australia

Right Eye Image

Left Eye Image

To view stereo pair above, cross eyes slightly until a third white dot appears between the two. New center image is 3D!

Meru Volcano, Tanzania

Meru Volcano, Tanzania

Kamchatka

Oil Field Subsidence

Active Erosion: Los Gatos Creek, San Joaquin Valley, California

"Marson Earth" Analogs ~

Shuttle Radar Topography Mission \& Mars Global Surveyor Wind-Eroded Folded Strata

Candor Chasma,Valles Marineris MGS Photograph

Qaidam Basin, China SRTM Shaded Relief

"Mars on Earth" Analogs ~

 Shuttle Radar Topography Mission \& 2001 Mars OdysseyCrossing Grabens

Tempe Terra 2001 Mars Odyssey

Afar Triangle, Ethiopia SRTM Shaded Relief

"Mars on Earth" Analogs ~

Shuttle Radar Topography Mission
 \& Mars Global Surveyor
 Impact Craters and Ejecta Blankets

Martian Crater on Elysium Planitia MGS Photograph

Bosumtwi Crater, Ghana, Africa SRTM
Shaded Relief

SRTM Elevation as Brightness

Google Mars

Mars Orbiter Laser Altimeter (MOLA)
Fluvial Landforms

Mars Orbiter Laser Altimeter (MOLA)
Olympus Mons and Landslides

What Planet is This?

Afar Triangle, Africa, Earth

Hattian Landslide Kashmir / Pakistan

Earthquake Induced 8 October 2005

Earthquake-Induced Landslide, Kashmir/Pakistan, 8 October 2005

(Flicker PowerPoint Slide Pair: "Before \& After")

ASTER Image
1 KM
14 Nov 2000-27 Oct 2005 View Southwest to Hattian Bala, 1.5 X Vertical Exaggeration

Crippen \& Abrams NASA/JPL, 2006

Earthquake-Induced Landslide, Kashmir/Pakistan, 8 October 2005

(Flicker PowerPoint Slide Pair: "Before \& After")

ASTER Image
1 KM

14 Nov 2000-27 Oct 2005
View Southwest to Hattian Bala,
1.5 X Vertical Exaggeration

SRTM DEM With ASTER DEM Patch

Crippen \& Abrams NASA/JPL, 2006

BUILDING THREAT: CATASTROPHIC WASHOUT?

ASTER/SRTM Measurements:

Slide Volume $=75$ million cubic meters
Canyon Fill Height $($ Max $)=248$ meters
Lake Volume $($ Potential $)=42$ million m^{3}

Natural Dam: View DownStream, with Rising Lake

Natural Dam:
View
Upstream

Field Photos by Lt. Col. Wiley Thompson et al.

Earthquake-Induced Landslide, Kashmir/Pakistan, 8 October 2005 \square (Flicker PowerPoint Slide Pair: "Before \& After")

ASTER Stereo Pairs: 14 Nov 2000 \& 27 Oct 2005

Earthquake-Induced Landslide, Kashmir/Pakistan, 8 October 2005 \square (Flicker PowerPoint Slide Pair: "Before \& After")

ASTER Stereo Pairs: 14 Nov 2000 \& 27 Oct 2005

Hazard Scenarios:

- The lake overtops the landslide, flowing down the steep and loose face of this natural dam, possibly creating positive feedback between erosion and flow rates that leads to catastrophic discharge of water and debris.
- Water penetrates the landslide mass, and piping and/or mass movement lead to failure of the natural dam.
- A new landslide flows into the lake and triggers a large wave that overtops (and erodes) the natural dam.

ASTER and SRTM Contributions:

- Recording of post-slide and especially pre-slide conditions, allowing visualization and analysis of the topographic change.
- Measurement of the landslide volume. Reported field estimates were too low by nearly an order of magnitude ($8 \mathrm{M} \mathrm{m}^{3}$ versus $75 \mathrm{M} \mathrm{m}^{3}$).
- Measurement of the potential lake volume and the corresponding hazard.
- Geomorphic evidence of similar pre-historic landslides in the area and the erosion of the natural dams they created.

Hattian Landslide Natural Dam Lake Growth

27 Oct 2005

28 April 2006 And the lakes were still rising in late 2006

Guinsaugon Village Landslide, Leyte Island, Philippines

17 February 2006

A Study with SRTM and ASTER
Robert E. Crippen, NASA/JPL

Guinsaugon, Philippines Landslide of 17 Feb 2006

Guinsaugon Village Landslide, Leyte Island, Philippines

ASTER Full Scene: 1 March 2006

Guinsaugon Village Landslide, Leyte Island, Philippines

Guinsaugon Village Landslide, Leyte Island, Philippines

SRTM-Landsat Anaglyph

SRTM-Shading Anaglyph

Tectonic exposure is a long-term driver of the mass wasting hazard.

Guinsaugon, Philippines Landslide of 17 Feb 2006

SRTM Shaded Relief Anaglyph with ASTER Image Patch

Tsunami First-Impact, Khao Lak, Thailand

26 December 2004

A Study with SRTM and ASTER
Robert E. Crippen, NASA/JPL

Tsunami Impact at Khao Lak, Thailand

Tsunami First-Wave Impact at Khao Lak, Thailand

 Ioualalen et al. Model

Tsunami First-Wave Impact at Khao Lak, Thailand

Terra MODIS
10:37 AM

Ioualalen et al. Model 10:34 AM

Tsunami First-Wave Impact at Khao Lak, Thailand

Sequence Left to Right: ~ 1 Second / Frame
$\sim 24 \mathrm{~km} / \mathrm{h}$

Video by Anukul Charoenkul from Viewpoint Restaurant

Tsunami Damage: Khao Lak, Thailand

Shuttle Radar Topography Mission SRTM

DATA ACCESS: United States Geological Survey http://edc.usgs.gov

INFORMATION: NASA JPL
http://www.jpl.nasa.gov/srtm/

VISUALIZATIONS:
http://photojournal.jpl.nasa.gov

[^0]: Includes Data Delivered Through January 26th.

